Paper Title
Effect of Fiber Type on Freeze Thaw Durability of SIFCON
Abstract
Cement-based composite tends to lose its bearing capacity under mechanical loads as well as thermal effects like
freeze-thaw. Especially composites such as slurry infiltrated fiber concrete (SIFCON), homogeneous cement paste phase,
causes cracks to occur, expand and disintegrate more easily. In such composites, only fibers are effective to stop the spread and
distribution of cracks. In addition to the binding type, the fiber/binder ratio, size of the fibers, the type of fiber plays an
important role in the performance of the composite. For this purpose different fibers and binders were used in the production
SIFCON. In this study steel and polypropylene fibers with two different dimensions were used to investigate the effect of fiber.
In the binder phase Portland cement was used. Produced prismatic specimens were exposed to 50, 75 and 100 cycles of
freezing-thawing effects. At the end of the test results that conducted on the effect of fiber and binder type, the crack effects
under freeze-thaw cycles were determined with discussing the changes in unit weight, ultrasonic pulse velocity, bending
strength, compressive strength and SIFCON’s performance. In generally, it was observed that fiber lengths and types were
effected the SIFCON’s freeze-thaw resistance, crack growth and branching.
Index Terms- SIFCON, macro-microfiber, steel fiber, polypropylene fiber, freeze-thaw effect.